Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Drug Metab Pharmacokinet ; 49(1): 71-85, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38044419

RESUMO

BACKGROUND: Overactive adenosine triphosphate signaling via P2X3 homotrimeric receptors is implicated in multiple conditions. To fully understand the metabolism and elimination pathways of eliapixant, a study was conducted to assess the pharmacokinetics, mass balance, and routes of excretion of a single oral dose of the selective P2X3 receptor antagonist eliapixant, in addition to an in vitro characterization. METHODS: In this single-center open-label non-randomized non-placebo-controlled phase I study, healthy male subjects (n = 6) received a single dose of 50 mg eliapixant blended with 3.7 MBq [14C]eliapixant as a PEG 400-based oral solution. Total radioactivity and metabolites excreted in urine and feces, and pharmacokinetics of total radioactivity, eliapixant, and metabolites in plasma were assessed via liquid scintillation counting and high-performance liquid chromatography-based methods coupled to radiometric and mass spectrometric detection. Metabolite profiles of eliapixant in human in vitro systems and metabolizing enzymes were also investigated. RESULTS: After administration as an oral solution, eliapixant was rapidly absorbed, reaching maximum plasma concentrations within 2 h. Eliapixant was eliminated from plasma with a mean terminal half-life of 48.3 h. Unchanged eliapixant was the predominant component in plasma (72.6% of total radioactivity area under the curve). The remaining percentage of drug-related components in plasma probably represented the sum of many metabolites, detected in trace amounts. Mean recovery of total radioactivity was 97.9% of the administered dose (94.3-99.4%) within 14 days, with 86.3% (84.8-88.1%) excreted via feces and 11.6% (9.5-13.1%) via urine. Excretion of parent drug was minimal in feces (0.7% of dose) and urine (≈ 0.5%). In feces, metabolites formed by oxidation represented > 90% of excreted total radioactivity. The metabolites detected in the in vitro experiments were similar to those identified in vivo. CONCLUSION: Complete recovery of administered eliapixant-related radioactivity was observed in healthy male subjects with predominant excretion via feces. Eliapixant was almost exclusively cleared by oxidative biotransformation (> 90% of dose), with major involvement of cytochrome P450 3A4. Excretion of parent drug was of minor importance (~ 1% of dose). CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov: NCT04487431 (registered 27 July 2020)/EudraCT number: 2020-000519-54 (registered 3 February 2020), NCT02817100 (registered 26 June 2016), NCT03310645 (registered 16 October 2017).


Eliapixant is a drug that acts on structures in the body called P2X3 receptors that are involved in several conditions, including chronic cough, overactive bladder, and endometriosis-related pain. When evaluating a new drug, it is important to know how it is being removed from the body by natural mechanisms. We performed a study in which six healthy male volunteers took a single dose of eliapixant, and we investigated what happened to the drug after it was taken. We measured the amount of eliapixant in the volunteers' blood, urine, and feces, and also measured the compounds formed when eliapixant was broken down naturally by the body ("metabolites"). We also used human cells in the laboratory to investigate how the different metabolites of eliapixant are formed. Almost three-quarters of eliapixant in the blood had not been broken down at all, while the remaining one-quarter had been converted into many different metabolites. A total of 2 weeks after taking eliapixant, almost all of it had been converted to metabolites and eliminated from the body (mostly in feces, but also a small amount in urine). The most important organ for breaking down eliapixant is the liver. The information from this study will help doctors determine whether eliapixant is likely to interfere with other drugs taken simultaneously, and whether patients with liver or kidney problems might take longer than healthy people to remove it from their bodies.


Assuntos
Redes e Vias Metabólicas , Antagonistas do Receptor Purinérgico P2X , Humanos , Masculino , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas , Fezes/química , Administração Oral , Voluntários , Voluntários Saudáveis
2.
Br J Clin Pharmacol ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38048692

RESUMO

AIMS: Asundexian is an oral, direct and reversible inhibitor of activated factor XI (FXIa) in development for the treatment of thromboembolic events. This article summarizes results from preclinical and clinical studies, including identification of enzymes involved in asundexian pharmacokinetics, and evaluation of potential target drug-drug interactions. METHODS: In vitro studies investigated the substrate characteristics of asundexian towards several cytochrome P450 (CYP) isoforms, hydrolytic enzymes and drug transporters. Inhibition of the amide hydrolysis of asundexian was investigated in vitro for several relevant drugs. Phase 1 studies in healthy male participants investigated the pharmacokinetics (PK) of asundexian upon co-administration of combined inhibitors or an inducer of P-gp and CYP3A4 (itraconazole, verapamil or carbamazepine, respectively, or the moderate CYP3A4 inhibitor fluconazole). The pharmacodynamic (PD) markers are activated partial thromboplastin time and FXIa inhibition. RESULTS: Asundexian was predominantly metabolized via carboxylesterase 1 and, to a lesser extent, via CYP3A4 and is a substrate of P-gp. The asundexian area under the plasma concentration-time curve (AUC) increased by 103% and 75.6% upon combined inhibition of P-gp and strong or moderate inhibition of CYP3A4, respectively, but was unaffected by moderate CYP3A4 inhibition. Combined P-gp and CYP3A4 induction by carbamazepine decreased asundexian AUC by 44.4%. PD is concentration-dependent, thus no differences in maximum responses and recovery commensurate with PK effect(s) were observed. Adverse events were mild and asundexian was well tolerated. CONCLUSIONS: The presented studies confirmed that CYP3A4 and P-gp contribute to asundexian metabolism and excretion. Observed effects were in line with data from a previous mass balance study.

3.
Eur J Drug Metab Pharmacokinet ; 48(4): 411-425, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37365440

RESUMO

BACKGROUND AND OBJECTIVES: Current anticoagulants pose an increased risk of bleeding. The development of drugs targeting factor XIa, like asundexian, may provide a safer treatment option. A human mass­balance study was conducted to gain a deeper understanding of the absorption, distribution, metabolism, excretion, and potential for drug-drug interaction of asundexian. Additionally, an overview of the biotransformation and clearance pathways for asundexian in humans and bile-duct cannulated (BDC) rats in vivo, as well as in vitro in hepatocytes of both species, is reported. METHODS: The mass balance, biotransformation, and excretion pathways of asundexian were investigated in six healthy volunteers (single oral dose of 25 mg [14C]asundexian) and in BDC rats (intravenous [14C]asundexian 1 mg/kg). RESULTS: Overall recovery of radioactivity was 101% for humans (samples collected up to 14 days after dosing), and 97.9% for BDC rats (samples collected in the 24 h after dosing). Radioactivity was mainly excreted into feces in humans (80.3%) and into bile/feces in BDC rats (> 94%). The predominant clearance pathways in humans were amide hydrolysis to metabolite M1 (47%) and non-labeled M9 with subsequent N-acetylation to M10; oxidative biotransformation was a minor pathway (13%). In rats, hydrolysis of the terminal amide to M2 was the predominant pathway. In human plasma, asundexian accounted for 61.0% of total drug-related area under the plasma concentration-time curve (AUC); M10 was the major metabolite (16.4% of the total drug-related AUC). Excretion of unmetabolized drug was a significant clearance pathway in both species (human, ~ 37%; BDC rat, ~ 24%). The near-complete bioavailability of asundexian suggests negligible limitations on absorption and first-pass metabolism. Comparison with radiochromatograms from incubations with human or rat hepatocytes indicated consistency across species and a good overall in vitro/in vivo correlation. CONCLUSIONS: Similar to preclinical experiments, total asundexian-derived radioactivity is cleared quantitatively predominantly via feces. Excretion occurs mainly via amide hydrolysis and as the unchanged drug.


Assuntos
Anticoagulantes , Fator XIa , Humanos , Ratos , Animais , Biotransformação , Oxirredução , Disponibilidade Biológica , Fezes , Administração Oral
4.
Drug Metab Dispos ; 46(11): 1546-1555, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30171161

RESUMO

Mass balance and biotransformation of finerenone, a nonsteroidal mineralocorticoid receptor antagonist, were investigated in four healthy male volunteers following a single oral administration of 10 mg (78 µCi) of [14C]finerenone and compared with data from studies in dogs and rats. The total recovery of the administered radioactivity was 101% in humans, 94.7% in dogs, and 95.2% in rats. In humans, radioactivity was mainly excreted renally (80%); in rats, it was primarily the biliary/fecal route (76%); and in dogs, excretion was more balanced. Finerenone was extensively metabolized in all species by oxidative biotransformation, with minor amounts of unchanged drug in excreta (humans: 1%; dogs, rats: <9%). In vitro studies suggested cytochrome P450 3A4 was the predominant enzyme involved in finerenone metabolism in humans. Primary metabolic transformation involved aromatization of the dihydronaphthyridine moiety of metabolite M1 as a major clearance pathway with a second oxidative pathway leading to M4. These were both prone to further oxidative biotransformation reactions. Naphthyridine metabolites (M1-M3) were the dominant metabolites identified in human plasma, with no on-target pharmacological activity. In dog plasma, finerenone and metabolite M2 constituted the major components; finerenone accounted almost exclusively for drug-related material in rat plasma. For metabolites M1-M3, axial chirality was observed, represented by two atropisomers (e.g., M1a and M1b). Analysis of plasma and excreta showed one atropisomer (a-series, >79%) of each metabolite predominated in all three species. In summary, the present study demonstrates that finerenone is cleared by oxidative biotransformation, mainly via naphthyridine derivatives.


Assuntos
Biotransformação/fisiologia , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Naftiridinas/metabolismo , Administração Oral , Idoso , Animais , Bile/metabolismo , Citocromo P-450 CYP3A/metabolismo , Cães , Fezes/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Ratos , Ratos Wistar
5.
Eur J Drug Metab Pharmacokinet ; 43(6): 715-727, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29779093

RESUMO

BACKGROUND AND OBJECTIVES: Finerenone is a selective, non-steroidal mineralocorticoid receptor antagonist. In vivo and in vitro studies were performed to assess absolute bioavailability of finerenone, the effect of metabolic enzyme inhibitors on the pharmacokinetics of finerenone and its metabolites, the quantitative contribution of the involved enzymes cytochrome P450 (CYP) 3A4 and CYP2C8 and the relevance of gut wall versus liver metabolism. METHODS: The pharmacokinetics, safety and tolerability of finerenone (1.25-10 mg orally or 0.25-1.0 mg intravenously) were evaluated in healthy male volunteers in four crossover studies. Absolute bioavailability was assessed in volunteers receiving finerenone orally and by intravenous infusion (n = 15) and the effects of erythromycin (n = 15), verapamil (n = 13) and gemfibrozil (n = 16) on finerenone pharmacokinetics were investigated. Finerenone was also incubated with cryopreserved human hepatocytes in vitro in the presence of erythromycin, verapamil or gemfibrozil. RESULTS: Finerenone absolute bioavailability was 43.5% due to first-pass metabolism in the gut wall and liver. The geometric mean AUC0-∞ ratios of finerenone (drug + inhibitor/drug alone) were 3.48, 2.70 and 1.10 with erythromycin, verapamil and gemfibrozil, respectively. The contribution ratio of CYP3A4 to the metabolic clearance of finerenone derived from these values was 0.88-0.89 and was consistent with estimations based on in vitro data, with the remaining metabolic clearance due to CYP2C8 involvement. CONCLUSION: Finerenone is predominantly metabolized by CYP3A4 in the gut wall and liver. Increases in systemic exposure upon concomitant administration of inhibitors of this isoenzyme are predictable and consistent with in vitro data. Inhibition of CYP2C8, the second involved metabolic enzyme, has no relevant effect on finerenone in vivo.


Assuntos
Naftiridinas/farmacocinética , Adulto , Disponibilidade Biológica , Estudos Cross-Over , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP3A/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Eritromicina/farmacologia , Mucosa Gástrica/metabolismo , Genfibrozila/farmacologia , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Antagonistas de Receptores de Mineralocorticoides/efeitos adversos , Antagonistas de Receptores de Mineralocorticoides/sangue , Antagonistas de Receptores de Mineralocorticoides/farmacocinética , Naftiridinas/efeitos adversos , Naftiridinas/sangue , Verapamil/farmacologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...